D L

POWER

11.1

Section 2

POWER-DRIVEN PUMPS

LOCKHEED AIRCRAFT HYDRAULIC EQUIPMENT

4090 M.19187 G.2508 11/44 1050 T.B.L 30

8. 18

SECTION 2

POWER DRIVEN PUMPS

LIST OF CHAPTERS

(Breaks in numerical sequence are due to the removal of obsolete chapters)

 Engine-driven pumps, Mk. 6, Series I, Part No. AIR 8000, Mk. 7, Part No. AIR 41000 Mk. 9, Part No. AIR 68000

3 Engine-driven pump, Mk. 8, Part No. AIR 43000

RESTRICTED[®]

<u>س</u>^

(A.L. 90, June 57)

Schedule

Chapter 2

ENGINE DRIVEN PUMPS

Mk. 6, Series 1, Part No. AIR 8000

Mk. 7, Part No. AIR 41000 (AL. 87.)MK.9, PART No. Air 68,000

LIST OF CONTENTS

I Engine driven pumps, Mk. 6, Series I, Part No. AIR 8000 and Mk. 7, Part No. AIR 41000 II (174.87) AIR 68000

RESTRICTED

Diagram

RESTRICTED

(AL.87.)

Ref. No.	Part and D	escription		Permissi Dime	ble Worn ension			
on Diagram 1			Dimension, New	Interchange- able Assembly	Selective Assembly	Clearance, New	Perinissible Worn Clearance	Remarks
(1))	(3)	(4)	(5)	(6)	(7)	(8)
1	LINER FOR ROLLER RACE ON BEARING	Liner (bore)	$\frac{1 \cdot 6530}{1 \cdot 6525}$	1.6533	1.6535	0.000	0.0005	
		Bearing	$\frac{1 \cdot 6535}{1 \cdot 6530}$	1.6528	1.6525	(int.)	0.0003	
2	BEARING IN LINER FOR END COVER	Liner (bore)	$\frac{1 \cdot 6530}{1 \cdot 6525}$	1.6533	1.6535	0.000	0.0005	
		Bearing	$\frac{1 \cdot 6535}{1 \cdot 6530}$	1.6528	1 • 6525	(int.)	0.0002	
3	BEARING ON ECCENTRIC SHAFT	Bearing	$\frac{0\cdot 5907}{0\cdot 5902}$	0.5907	0.5907	0.0003	0.0000	
		Shaft dia. for bearing	$\frac{0\cdot 5907}{0\cdot 5904}$	0.5904	0.5904	0.0005 (int.)	0.0003	
4	OIL THROWER ON ECCENTRIC SHAFT	Oil thrower (bore)	$\frac{0\cdot 5630}{0\cdot 5620}$	0.5630	0.5630	0.002	0.0020	
		Eccentric shaft	$\frac{0.5620}{0.5610}$	0.5610	0.5610	0.000	0.0020	

SCHEDULE I

.

5	ECCENTRIC SHAFT	Dia. of eccentric	$\frac{0.6816}{0.6811}$	0.6809	0.6809			
6	ECCENTRIC SHAFT	End-float				$\frac{0.023}{0.003}$	$\underbrace{\begin{array}{c} 0\cdot 0230\\ \hline 0\cdot 0030 \end{array}}$	
7	ECCENTRIC SHAFT IN FIXING FLANG	Projection of shaft E from fixing flange	$\frac{1\cdot 8470}{1\cdot 8210}$	$\frac{1\cdot 8470}{1\cdot 8210}$	$\frac{1\cdot 8470}{1\cdot 8210}$			
8	ECCENTRIC SHAFT	Width of splines	$\frac{0\cdot 1235}{0\cdot 1220}$	0.1150	0.1150			
9	PLUNGER IN CYLIN RADIAL PUMP Part No.	DER FOR						
	suffix N	Cylinder bore	$\frac{0\cdot 4135}{0\cdot 4133}$	See .	Remarks	0.0004*	0.0004	*Plunger and cylinder to be selectively assembled
	Ν	Plunger dia.	$\frac{0\cdot 4131}{0\cdot 4130}$	See	Remarks	0.0002	0.0004	to obtain this clearance
	OR		0 11 10					Plungers and avlinder
	W	Cylinder bore	$\frac{0\cdot4140}{0\cdot4138}$	See	Remarks	0.0004*	0.0004	bores must be free from surface imperfections.
	W	Plunger dia.	$\frac{0\cdot 4136}{0\cdot 4135}$	See	Remarks	0.0002		described in Vol. 2, Part 3, Sect. 2, Chap. 2 of this Air Publication.
	X	Cylinder bore	$\frac{0\cdot 4145}{0\cdot 4143}$	See	Remarks	0.0004*	0.0004	
Vol 2 Pt	X 2 Sect 2 plus AL 90 Jun 57 Ch 2-3 L	Plunger dia. ockheed Pumps Fits and Clearan	0.4141 ceg.QQR4pdf	See	Remarks	0.0002	0.0004	Page 5
		-						

•

AP 1803B

This leaf issued with A.L. No. 72, November, 1953

٠

A.P.1803B, Vol. 2, Part 2, Sect. 2, Chap. 2

RECTDICTED

RESTRICTED

(ALS-7)

SCHEDULE I (continued) ENGINE DRIVEN PUMPS, Mk. 6, SERIES I, PART No. AIR.8000 and Mk. 7, PART No. AIR.41000 AIR 68000

Ref. No.	Part and Description		Permissi Dime	ble Worn nsion				
on Diagram 1			Dimension, New	Interchange- able Assembly	Selective Assembly	Clearance, New	Permissible Worn Clearance	Remarks
(1)		2)	(3)	(4)	(5)	(6)	(7)	(8)
10	PIN FOR SHOE IN PLUNGER	E IN Plunger bearing bore		0.25125	0.25125	0.0010	0.0020	
		Pin dia.	$\frac{0\cdot 2495}{0\cdot 24925}$	0 · 24925	0 · 24825	0.00025	0.0020	
11	NEEDLE BEARING	Dia. of rollers	$\frac{0\cdot 1182}{0\cdot 1180}$	0.1180	0.1180			
12	BEARING RING	Bore	$\frac{0\cdot 9190}{0\cdot 9185}$	0.9192	0.9192			
13	BEARING RING	o/d of bearing	$\frac{1\cdot 1500}{1\cdot 1490}$	1.1470	1 • 1370			
14	SHOE	Thickness between pin and bearing ring	$\frac{0.0500}{0.0480}$	0.0450	0.0410			Critical dimension measured in conjunc- tion with the bearing ring and pin
15	PIN FOR SHOE	Thickness of milled portion	$\frac{0\cdot 1250}{0\cdot 1240}$	0.1230	0.1170			
1							İ	

AP 1803B Vol 2 Pt 2 Sect 2 plus AL 90 Jun 57 Ch 2-3 Lockheed Pumps Fits and Clearances OCR.pdf

-

4962 63206	16	SHOE RETAINING RING	Bore	$\frac{1\cdot 5020}{1\cdot 5010}$	1 • 5040	1.5140			- -
3 12/53 1,600 C.B.a:	17	PIN FOR SHOE AND SHOE RETAINING RING	Total clearance between pin and retaining rings	_			$\frac{0.009}{0.001}$	0.0210*	*This clearance not to vary by more than 0.005 in. between both rings of any one pump.
5.LTD, GP.30	18	DELIVERY VALVE	Valve lift	$\frac{0\cdot 2400}{0\cdot 1000}$	$\frac{0\cdot 2400}{0\cdot 1000}$	$\frac{0\cdot 2400}{0\cdot 1000}$			
	19	DELIVERY VALVE SPRING	Free length	$\frac{1\cdot0400}{1\cdot0200}$	$\frac{1\cdot0400}{1\cdot0200}$	$\frac{1\cdot0400}{1\cdot0200}$			-
	20	END FLOAT OF BEARING RING BETWEEN	Shaft length affected	$\frac{0\cdot8060}{0\cdot8040}$	0.8100*	0.8160*	0.010	0.0200	*Refer to repair ARD 469
		ECCENTRIC SHAFT AND RETAINING DISC	Length of bearing ring	$\frac{0\cdot8000}{0\cdot7960}$	0.7900	0.7860	0.004	0.0200	
			Width of disc	$\frac{0.1250}{0.1240}$ and	0.1240*	0.1240*			*Discs showing deep
				$\frac{0\cdot1000}{0\cdot0800}$	0.0800*	0.0800*			$\int_{0}^{0} \frac{damage}{damage} $
AP 1803B↑	/ol 2 Pt 2 S	Sect 2 plus AL 90 Jun 57 Ch 2-3 Loe	khood Pumps Fits and Clearance	SOCR pdf					Page 7
			- H			U T			

i.

This leaf issued with A.L. No. 72, November, 1953

A.P.1803B, Vol. 2, Part 2, Sect. 2, Chap. 2

G:

A.P.1803B, Vol.2 , Part 2, Sect. 2, Chap. 2, Sched. 1

M30301 11/49 1,500 C.B.&S.Ltd. Gp.30

Chapter 3

ENGINE-DRIVEN PUMP, Mk. 8

Part No. AIR 43000

RESTRICTED

(A.L. 90, June 57)

21

AP 1803B Vol 2 Pt 2 Sect 2 plus AL 90 Jun 57 Ch 2-3 Lockheed Pumps Fits and Clearances OCR.pdf

معرفين

Ref. No.					Permissil Dime	ble Worn ension			
on Diagram	Part and De	scription		Dimension New	Interchange- able Assembly	Selective Assembly	Clearance New	Permissible Worn Clearance	Remark
(1)	(2)			(3)	(4)	(5)	(6)	(7)	(8)
1	DOWELS IN BODY AND INLET HEAD	Body and inle	et head i/d	$\frac{0.5008}{0.5000}$	0.5010	0.5014	0.0004	0.0006	
		Dowel	o/d	$\frac{0.5008}{0.5004}$	0.5004	0.4994	-0.0008	0.0000	
2	BEARINGS IN LINER	Liner	i/d	$\frac{2\cdot 4412}{2\cdot 4407}$	2.4412	2.4417	0.0007	0.000-	
		Bearing	o/d	$\frac{2 \cdot 4410}{2 \cdot 4405}$	2.4405	2.4400	-0.0003	0.0007	
3	SEAL IN BODY	Body	i/d	$\frac{4\cdot 5635}{4\cdot 5620}$	4.5650	4 • 5665	-0.0175	0.01-0	
		Seal, fitted	o/d	$\frac{4 \cdot 5980}{4 \cdot 5810}$	4.5800	4.5770	-0.0360	-0.0150	
4	INLET HEAD IN BODY	Body	i/d	$\frac{4 \cdot 5635}{4 \cdot 5620}$	4 • 5650	4 • 5665	0.0040	0.0000	
-		Inle t head	o/d	$\frac{4\cdot 5605}{4\cdot 5595}$	4 · 5590	4 · 5560	0.0015	0.0060	
l 2 Pt 2 Sec	t 2 plus AL 90 Jun 57 Ch 2-3 Lockheed	Inlet head	o/d ances OCR.p	4 · 5595	4.5590	4.5560			

A.P.1803B, Vol. 2, Part 2, Sect. 2, Chap. 3 (A.L. 90)

Diagram I. Engine-driven pump, Mk. 8, Part No. AIR 4300

i

S Н

RIC

m

Q

SCH	HEDULE I (continued) ENGINE-DRIVEN PUMP, Mk. 8, Part No. AIR 4300										
Ref. No.					Permiss Dim	ible Worn ension					
Diagram	Part and Do	escription		Dimension New	Interchange- able Assembly	Selective Assembly	Clearance New	Permissible Worn Clearance	Remarks		
	(2)		(3)	(4)	(5)	(6)	(7)	(8)		
5	SEAL IN COLLECTOR RING	Collector ring	i/d	$\begin{array}{c} 0.5008\\ \overline{0.5000} \end{array}$	0.5020	0.5030	-0.0116				
		Seal, fitted	o/d	$\begin{array}{c} 0 \cdot 5225\\ \hline 0 \cdot 5124 \end{array}$	0.5120	$\begin{array}{c c} 120 \\ 0.5100 \end{array} - 0.0225$					
6	DELIVERY VALVE SEAT IN COLLECTOR RING	Collector ring Valve seat	i/d	$\frac{0.5008}{0.5000}$ $\frac{0.4990}{0.5000}$	0.5020	0.5030	$\frac{0.0028}{0.0010}$	0.0040			
7	DELIVERY VALVE SPRING	Free length	- , -	$\frac{1 \cdot 0400}{1 \cdot 0200}$	$\frac{1\cdot0400}{1\cdot0200}$	$\frac{1 \cdot 0400}{1 \cdot 0200}$			Loaded to $1\frac{1}{2}/1\frac{1}{4}$ lb., spring length to be		
8	SCREWED DOWELS IN COLLECTOR RING	Collector ring	i/d	$\frac{0\cdot3133}{0\cdot3125}$	0.3138	0.3142	0.0010	0.0015	0.73 m.		
		Screwed dowel	o/d	$\frac{0\cdot 3127}{0\cdot 3123}$	0.3123	0.3110	-0.0002				

.

.

•

Ref. No.				Permissit Dime	ole Worn ension				
on Diagram	Part and Des	cription	Dimension New	Interchange- able Assembly	Selective Assembly	Clearance New	Permissible Worn Clearance	Remarks	
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	
9	STUDS IN CYLINDERS	Cylinder i/d	$\begin{array}{c} 0 \cdot 2190 \\ \hline 0 \cdot 2180 \end{array}$	0.2190	0·2240	0.0160	0.0100		
		Stud o/d	$\frac{0 \cdot 2080}{0 \cdot 2030}$	0.2030	0.2020	0.0100	0.0160		
10	SHOE	Thickness between pin and bearing ring	$\frac{0.0500}{0.0460}$	0.0450	0•0420*] —		On assembly the tot clearance betwee pin for shoe and r	
11	BEARING RING	Bearing ring o/d	$\frac{1\cdot1500}{1\cdot1490}$	1 • 1470	1.1410*			$\begin{array}{c} \begin{array}{c} 0 \cdot 0130 \\ \hline 0 \cdot 0010 \\ \hline 0 \cdot 0210 \end{array} \text{ new} \\ 0 \cdot 0210 \end{array} \begin{array}{c} \text{remissible} \\ \text{worn} \end{array}$	
12	PIN FOR SHOE	Thickness of milled portion	$\begin{array}{c} 0 \cdot 1250 \\ 0 \cdot 1240 \end{array}$	0.123	0.120*			*Parts worn to thes dimensions may onl be used providing a	
13	SHOE RETAINING RING	Ring i/d	$\frac{1\cdot 5020}{1\cdot 5010}$	1.504	1.510*			corresponding maing parts are within new limits. (For mating parts set items 10, 11, 12, 13 col (3))	
: Vol 2 Pt 2	Sect 2 plus AL 90 Jun 57 Ch 2-3 Lockhe	ed Pumps Fits and Clearances C	CR.pdf	1				Paç	

SCHEDULE | (continued)

1

.

ENGINE-DRIVEN PUMP, Mk. 8, Part No. AIR 4300

SCHE	EDULE I (continued)	ENGINE-DR	IVEN F	PUMP, Mk	. 8, Part I	No. AIR 43	000		
Ref. No.					Permissi Dim	ble Worn ension			
on Diagram	Part and Do	escription		Dimension New	Interchange- able Assembly	Selective Assembly	Clearance New	Permissible Worn Clearance	Remarks
(1)	(2)	·		(3)	(4)	(5)	(6)	(7)	(8)
14	PIN FOR SHOE IN PLUNGER	Plunger, bearing	g bore	0.25025 0.24975	0.25125	0.25150	0.00100	0.0020	
		Pin	'in o/d		0.24925	0•24775	0.00025		
15	PLUNGER IN CYLIND Part No. Suffix N	ER Cylinder bore		$\begin{array}{c} 0 \cdot 4135 \\ \hline 0 \cdot 4133 \end{array}$	See remarks	See remarks	0.0004*	0.0004	
	Ν	Plunger	o/d	$\frac{0\cdot 4131}{0\cdot 4130}$	"	,,	0.0002		
	W	Cylinder bore		$\frac{0\cdot4140}{0\cdot4138}$,,	, 9	0.0004*	0.0004	*Plungers and cylinders are selectively as- sembled to maintain
	W	Plunger	o/d	$\frac{0\cdot 4136}{0\cdot 4135}$,,	,,	0.0002		the clearance (ideal working clearance is 0.003 in.)
	Х	Cylinder bore		$\underbrace{\frac{0\cdot4145}{0\cdot4133}}$	"	,,	0.0004*	0.0004	Plungers and cylinders must be free from surface imperfec-
	Х	Plunger	o/d	$\frac{0\cdot 4141}{0\cdot 4140}$,,	,,	0-0002		tions. Salvage scheme for these parts is ARD.1509

1

A.P.1803B, Vol. 2, Part 2, Sect. 2, Chap. 3 (A.L. 90)

SCHI	EDULE I (continued)	ENGINE-DR	IVEN I	PUMP, MI	c. 8, Part	No. AIR 4	3000		
Ref. No.					Permissi Dim	ble Worn ension			}
on Diagram	Part and Des	cription		Dimension New	Interchange- able Assembly	Selective Assembly	Clearance New	Permissible Worn Clearance	Remarks
(1)	(2)			(3)	(4)	(5)	(6)	(7)	(8)
21	SEAL IN BODY	Body	i/d	$\begin{array}{c} \underline{1 \cdot 1262} \\ 1 \cdot 1250 \end{array}$	1.1280	1 • 1291	-0.0148		
		Seal fitted	o/d	$\frac{1\cdot 1570}{1\cdot 1410}$	1.1400	1 • 1370	-0.0320	-0.0120	
22	CRANKSHAFT	Eccentric	o/d	$\begin{array}{c} 0.7559\\ \hline 0.7554 \end{array}$	0.7552	0.7552			
23	BEARING RING	Bore		$\frac{0\cdot 9935}{0\cdot 9930}$	0.9930	0.9930			
24	NEEDLE ROLLERS	Roller	o/d	$\frac{0\cdot 1182}{0\cdot 1180}$	0.1180	0.1180			Permissible worr clearance will not be
25	END FLOAT OF BEARING RING BETWEEN RETAINING	Shaft length		$\frac{0 \cdot 9020}{0 \cdot 8980}$	0•9020	0•9050*			parts to starred di mensions are only used with corre
	DISC AND THRUST RING	Disc width		$\frac{0\cdot1050}{0\cdot1030}$	0·1020	0•1000*	0-0170		parts that are within new limits. Retain- ing discs and thrust
		Ring width		$\frac{0 \cdot 0950}{0 \cdot 0900}$	0.0890	0•0870*	0.0030	0.0200	scores and/or surface damage are scrap
		Bearing ring leng	gth	$\begin{array}{c} 0 \cdot 8000 \\ \hline 0 \cdot 7950 \end{array}$	0.7940	0.7920*			

Chapter 2

POWER DRIVEN PUMPS

Mk. 6, Series I, Part No. AIR 8000 Mk. 7, Part No. AIR 41000

LIST OF CONTENTS

					Para.						Para.
Introduction						Pumping elements	•••				16
General	•••		•••		I	Shoes					17
Essential equipment					3	Bearing rings		••••			18
Special tools	•••		•••		4	Assembling	•••				19
Reconditioning proced	lure					Tests (Mk. 6 only)					
General					5	General					21
Major parts				•••	7	Calibration test					24
Standard of repair			•••		8	Leakage test					25
Modifications					9	Section I of tests					26
External examination					10	Section 2 of tests					27
Dismantling					11	Section 3 of tests					28
Repair and reconditioning					12	Preparation for despatch	•••				29
Fixing flange cover					13						
Pressure end cover					14	Spare parts					
Eccentric shaft	•••	•••	•••		15	Spare parts required to	reco	ndition	100 pi	imps	30

LIST OF ILLUSTRATIONS

	Fig.		Fig.
Copper plating of liner in flange, A.R.D.802	IR	Repair to I B.A. and ¼ in. B.S.F. threads in end cover, A.R.D.999	8R
A.R.D.506	2R	Reclamation of plungers and cylinders,	0D (-) (h)
Oversize replacement of bleeder screw, A.R.D.508	3R	A.K.D.1309	9R (a) (D)
Copper plating of liner in end cover, A.R.D.803	4R	Cleaning up gasket face (end cover). A.R.D.1049	IOR
Fitting oversize delivery valve seats, A.R.D.823	5R	De-corroding end covers A R D 1319	11R
Plating worn or scored eccentric shaft, A.R.D.826	6R	Key diagram of power driven pump 1. Part	
Lapping bearing face on eccentric shaft, A.R.D.469	7R	No. AIR 8000	

RESTRICTED

and the state of the second

INTRODUCTION

General

1. The operations described in this chapter may be undertaken only by approved Repair Depots which are specially equipped with the necessary test rig and tools. The pumps may not be dismantled or serviced by any other Unit except as allowed at Sect. 2, Chap. 2 of Vol. I, under the heading of "Servicing". Pumps bearing serial numbers below 4000, marked on the high-pressure end cover, will be repaired only by Messrs. Automotive Products.

2. The Lockheed Mk. 6 pump is a seven-cylinder fixed-stroke piston pump in which the pistons are actuated by rotation of an eccentric shaft. The pumps are fully described and illustrated in Vol. I, Sect. 2, Chap. 2 of this publication.

Essential equipment

3. In addition to normal workshop equipment, the following special equipment is required for the overhaul and salvage described in this chapter:—

- (1) A set of tools to Lockheed D.I.S. No. 8 (Tools), as listed in para. 4.
- (2) A copy of Lockheed D.I.S. No. 8.
- (3) A copy of Lockheed D.I.S. No. 8 (repair drawings).
- (4) A suitable test rig.
- (5) A special high-pressure Static Test rig to C.R.E.W. D.I.S. No. 2.
- (6) A bath of trichlorethylene for cleaning parts of the pump.

Special tools

Stores Ref.	Part No.	Description
371/3213	AG 1297	Gauge concentricit-
37 I/3214	A I 5247	Handle roter for and 11
37 I/3217	A T 4811	Town view economia
37 I/3225	FPT 10179	Jaws, vice, assembly.
37 I/3226	FPT 101/2	Box, stud, No. I B.A.
37 I/3227	FDI 7066	Box, stud, $\frac{1}{4}$ in. B.S.F.
37 I/3228	FF J.7900	Drift, assembly, roller race.
37 I/2220	FPJ.8469	Drift, assembly, roller race.
37J/3229 37J/2020	FPJ.8468	Drift, assembly, roller race.
37J/3230	FPJ.8472	Fixture, valve assembly.
37J 3231	FPG.7860	Gauge, valve lift.
37J/3232	FPT.11378	Screw, holding end-cover.
37J/3233	FPT.12016	Extractor, inner races, main bearings in end cover.
37J/3234	FPT.12099	Extractor, outer races, main bearings in end
* 37J/3235		Gauge, dial, end play, Alpha Mercer, type
37J/3236	AG.9256	Holder, for dial gauge checking and play
37J/3237	FPT.12048	Drift, distance washer, and outer race main
20 T /2020		bearing in fixing flange.
32J/3238	FPT.12049	Drift, seals, fixing flange.
	·	Gauge, dial, end play, John Bull, type B, 1000 in.

TABLE I Special tools

*Item 37J/3240 is an alternative to 37J/3235

RESTRICTED

ģ.

RECONDITIONING PROCEDURE

General

5. For the purpose of reconditioning, pumps are divided into two categories:— Category I—Pumps which, on external examination, appear satisfactory. These are to be subjected to Section 1 of the tests and returned to service if they pass, or put in Category 2 if they fail.

Category 2—Pumps which, on external examination, appear unsatisfactory, and pumps of Category 1 which fail to pass Section 1 of the tests. All pumps in this category must be reconditioned. If no new major parts as defined in para. 7 are fitted, the pumps are to be subjected to Section 2 of the tests. All pumps which have new major parts fitted must be subjected to Section 3 of the tests.

6. The following chart summarizes the reconditioning procedure:---

Major parts

7. The following are defined as major parts:—

TABLE 2 Major parts

Stores Ref.	Description	Part No.
37J/434	Cylinder and plunger, group	AIR.29958
37J/392	Pin, retaining plunger	AIR.24266
37J/406	Shoe	AIR.24268
37 J/404	Rotor	AIR.24248
37J/396	Ring bearing	AIR.24256
37J/379	Bearing, roller journal	AIR.35466
37J/403	Roller, needle Hoffman RYBAN	AIR.24258

Standard of repair

8. The pump, after repair, is to conform to the standard in accordance with the requirements set out in this Schedule, and to have modifications incorporated in accordance with the classification as notified in the Z leaflets in Vol. 2, Part 1 of this publication.

Modifications

9. If any modification to a pump is incorporated during repair, the Issue number of the G.A. Drawing which shows the introduction of the modification, is to be stamped on the pump.

External examination

10. Clean the pump externally and examine as follows:—

- (1) Inspect the pipe connections for cleanliness.
- (2) Inspect the seals for damage, one being located on the seven holding-down cap-nuts and the others in the seven valve screws.
- (3) Examine the fixing flange for breakage, cracks, distortion and signs of heating.
- (4) Examine the driving shaft shear neck and splines for signs of distortion, wear and heating.
- (5) Examine for signs of leakage at the cover joint and at the valve screws.
- (6) Test the concentricity and projection of the splined shaft, using the gauge 37J/3213.
- (7) Fit the handle 37J/3214 on the splines and test the pump shaft for freedom of rotation.
- (8) Examine for any other external damage.

If the pump passes the above inspection, it must be washed out with hydraulic fluid to D.T.D.585 and subjected to Section 1 of the tests (*para.* 26). If it fails to pass the above examination it must be dismantled.

Note . . .

The above information is given for guidance and may not include all points to be examined. In all other respects the requirements of the Supervising Inspector must be met.

Dismantling

- 11. The procedure for dismantling the pump is as follows:—
- (1) Remove all locking wires together with their seals.
- (2) Using a standard spanner, remove the cap-nuts and gaskets from the body studs, and discard the gaskets. Hold the pump over a suitable wooden box and tap the splined portion of the shaft with a hide mallet to separate the parts of the pump body. The pump may now be dismantled easily.
- (3) Using Seeger circlip pliers (Stores Ref. 1B/4428), remove the circlip and withdraw the dust shield from the fixing flange cover.
 - (4) Using the drift 37J/3238, remove the Gits seals, oil thrower and distance piece assembly, ensuring that the land which locates the Seeger circlip is not damaged.
 - (5) Using the drift 37J/3237, remove the distance piece and the outer race of the roller bearing from the fixing flange cover.
 - (6) Remove the locking plates and springs, which lock the No. 1 B.A. cylinder holding-down nuts, unless the modified locking arrangement of tab-washers is incorporated.

RESTRICTED

HIY.

- (2) Running in. Run the pump for 10 min. at 1,000 r.p.m. and 1,000 lb. per sq. in.
- (3) Calibration test. Proceed as described in para. 24. If the pump fails to pass this test, remove the seven valve screws and gaskets, springs and valves and examine for dirt or pick-up on either the valve or valve seat. Clean these parts, replace and repeat Section 1 of the tests.
- (4) Leakage test. Proceed as described in para. 25. If the pump fails to pass this test, renew the seals; the pump may be passed as serviceable if it then passes the leakage test (*para.* 25).

Section 2 of tests

27. The following test apply to Category 2 pumps, as defined in para. 5. Easement times will be added later.

- (1) High-pressure static test. This test is made on cover AIR.29792 after sub-assembly with the delivery valves. The cover is to be tested on the high-pressure static rig at 1,000, 2,000, and 3,000 lb. per sq. in. and no leakage is permitted.
- (2) Endurance test. Run the pump as follows:----

10 min. at 1,000 r.p.m. and 1,000 lb. per sq. in.30 min. at 3,000 r.p.m. and0 lb. per sq. in.30 min. at 3,000 r.p.m. and 3,000 lb. per sq. in.5 min. at 3,750 r.p.m. and0 lb. per sq. in.5 min. at 3,750 r.p.m. and 3,000 lb. per sq. in.

- (3) Calibration test. Proceed as described in para. 24.
- (4) Leakage test. Proceed as described in para. 25. If the pump fails to pass this test, renew the seals; the pump may be passed as serviceable if it then passes the leakage test (*para*. 25).

Section 3 of tests

2

28. The following tests apply to pumps in which new major parts have been fitted.

- (1) High-pressure Static test. Proceed as described in para. 27 (1).
- (2) Running-in. Run the pump as follows:—

10 min. at 500 r.p.m. and 500 lb. per sq. in.

10 min. at 1,000 r.p.m. and 1,000 lb. per sq. in.

- 5 min. at 1,000 r.p.m. and 2,000 lb. per sq. in.
- 5 min. at 1,000 r.p.m. and 3,000 lb. per sq. in.
- (3) Check calibration test. The pump is to deliver not less than:---

80 cu. in. per min. at 600 r.p.m. and 3,000 lb. per sq. in.

170 cu. in. per min. at 1,000 r.p.m. and 3,000 lb. per sq. in.

(4) Proof test. Run the pump as follows:—

10 min. at 2,000 r.p.m. and 0 lb. per sq. in.

- 30 min. at 2,000 r.p.m. and 2,000 lb. per sq. in.
- 30 min. at 1,600 r.p.m. and 3,000 lb. per sq. in.
- (5) Remove the cover to check the shoe clearance and the general condition of the pump.
- (6) Endurance test. Proceed as described in para. 27 (2).
- (7) Calibration test. Proceed as described in para. 24.
- (8) The pump is to be dismantled to permit the examination of internal parts as may be directed by the supervising Inspector. (Easement—dismantle a minimum of 1 in 20 pumps, the easement being applied gradually). For pumps not dismantled, omit tests (9) and (10).

10 min. at 1,000 r.p.m. and 1,000 lb. per sq. in. 20 min. at 3,000 r.p.m. and 3,000 lb. per sq. in.

5 min. at 3,750 r.p.m. and 3,000 lb. per sq. in.

(10) Calibration test. Proceed as described in para. 24.

(11) Leakage test. Proceed as described in para. 25. If the pump fails to pass this test, renew the seals; the pump may be passed as serviceable if it then passes the leakage test (para. 25).

Preparation for despatch

29.

- (1) Flush out the pump with clean hydraulic fluid to D.T.D.585 and allow it to drain. All open ports must then be protected by approved means against the ingress of foreign matter.
- (2) Unprotected external surfaces must be properly cleaned and coated with an approved rust preventive to D.T.D.121 or its current equivalent.
- (3) The fixing flange and shaft must be protected from damage by a hardwood block or suitable casing.

SPARE PARTS REQUIRED TO RECONDITION 100 PUMPS

30. The following Table 3 gives the average number of spare parts required to recondition 100 pumps.

Part No.	Stores Ref.	Description	Remarks	No. required per 100 pumps
AIR.21896	37J/335	Seal		200
AIR.24318	37J/384	Disc, blanking		10
AIR.24254	37J/386	Disc, withdrawal		20
AIR.24308	37J/389	Joint		100
AIR.34206	37Ĵ/455	Ňut, cap	was 371/390	50
AIR.24300	37 J/391	Nut	Was 07 5/000	300
air.24266	37J/392	Pin, retaining plungers		100
air.24310	37J/395	Plug, vent		60
AIR.24256	37J/396	Ring, bearing		20
AIR.24246	37J/397	Ring. distance		20 10
AIR.24314	37 J/398	Ring. distance		5
AIR.28492	37 J/399	Ring. oil seal		700
AIR.24270	37 J/402	Ring, retaining shoe		20
Hoffman Ryban	271/102			30
AIR.24258	>3/J/403	Roller, needle bearing		150
AIR.24248	37J/404	Rotor		20
air.24268	37Ŭ/406	Shoe	For Mk 6 nump	20 750
	0,		only only	750
AIR. 338 10	37J/453	Stud 1 B.A. securing cylinder	$\frac{371}{410}$	200
AIR.33808	37J/454	Stud 1 in. B.S.F.	$\frac{3}{2} \frac{3}{2} \frac{3}{1} \frac{1}{411}$	200
air.24316	37 J/412	Thrower. oil	Was 0/J/311	100
ads.32. R	27M/4169	Washer. joint		700
AIR.24312	37 J/415	Washer, joint for yent plug		100
air.24296	37J/416	Washer, for cap nuts		700
air.30836	37 Ĭ/419	Washer tab		700
air.30688	37 Ĭ/430	Adapter for mounting flange		700
1 TD 25466	271/070	Deer's		33

TABLE 3

Spare parts for 100 pumps

Part No.	Stores Ref.	Description Remarks	No. required per 100 pumps
AIR.30834	37J/433	Cover, driven end and delivery valve	20
AIR.29958	37.]/434	Cyl. and plunger group	100
AIR.29440	37 J/435	Disc. retaining	20
air.30920	37 J/436	Flange, mounting group	20
AIF. 29800	37 J/439	Plug seating, for delivery valve stop	100
AIR.29 798	37J/440	Seating for delivery valves in driven end cover	100
AIR.29796	27M/7018	Spring for delivery valve	70
air.29794	37 J/443	Valve, delivery	70
ads.32.L	27M/4284	Washer, joint for adapter	5 0
air.31208	37 J/445	Ring, oil seal, inner Gits type	200
AIR.31206	37Ĵ/446	Ring, oil seal, outer, Gits	100
ads.101/AA	27M/4634	Circlip. Seeger type	10
AIR.37896	37 J/458	Shoe For Mk. 7 or Mk. 6	750
		SALVAGE PARTS	
ard.507	37J/447	Bush	25
ard.509	37J/448	Plug, vent	5
ard. 531	37J/449	Washer, joint	5
ard. 8 20	37J/450	Seating	10
ard.821	37J/451	Seating	5
ard.1000	37J/456	Stud	50
ard.824	37J/457	Seating was ARD.822 37J/452	2 2
		TRANSPORTATION PARTS	
ads.145.A	37J/424	Plug. 3 in.	100
ads.145.G	37 Ĭ/425	Plug. & in.	100
ADS.145 K	37 I/426	$Plu \sigma = \frac{16}{2}$ in	100

17 N 1

This leaf issued with A.L. No. 89, June, 1950

12

15

17 18 10 20 21 22

23

10

Chap. Page 28 Ν

A.P.1803B, Vol. 1, Sect.

۶,